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Abstract—Full-configuration control of robotic manipulators
with awareness of whole-arm kinematics is crucial for many
manipulation scenarios involving body collision avoidance or
body-object interactions, which makes it insufficient to consider
only the end-effector poses in policy learning. The typical approach
for whole-arm manipulation is to learn actions in the robot’s
joint space. However, the unalignment between the joint space
and actual task space (i.e., 3D space) increases the complexity of
policy learning, as generalization in task space requires the policy
to intrinsically understand the non-linear arm kinematics, which
is difficult to learn from limited demonstrations. To address this
issue, this letter proposes a kinematics-aware imitation learning
framework with consistent task, observation, and action spaces,
all represented in the same 3D space. Specifically, we represent
both robot states and actions using a set of 3D points on the arm
body, naturally aligned with the 3D point cloud observations. This
spatially consistent representation improves the policy’s sample
efficiency and spatial generalizability while enabling full-body
control. Built upon the diffusion policy, we further incorporate
kinematics priors into the diffusion processes to guarantee the
kinematic feasibility of output actions. The joint angle commands
are finally calculated through an optimization-based whole-arm
inverse kinematics solver for execution. Simulation and real-
world experimental results demonstrate higher success rates and
stronger spatial generalizability of our approach compared to
existing methods in body-aware manipulation policy learning.
Supplementary materials are available at our Project Website:
https://kinematics-aware-diffusion-policy.github.io.

Index Terms—Imitation Learning, Deep Learning in Grasping
and Manipulation, Learning from Demonstration.

I. INTRODUCTION

IMITATION learning, where an agent learns to mimic the

expert demonstrations, is an efficient approach to acquire

complex manipulation skills from limited data. Recently,

diffusion-based visual-motor policies [1]–[3] have shown many

exciting results in imitation learning. Compared to traditional

approaches, the remarkable abilities of diffusion models to

learn multi-modal, high-dimensional action distributions are

the key characteristics contributing to their success.

Due to the alignment between the action space and task

space which simplifies the policy learning process, Cartesian-

space end-effector pose representations are widely used in

existing imitation learning methods. However, for whole-arm

robotic manipulation tasks, precise control over the full robot

configuration is required, so imitating only the 6D end-effector

pose trajectories is naturally insufficient. In many scenarios,

such as operating in confined environments, avoiding collisions
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Fig. 1: The proposed approach uses a set of 3D nodes on the arm
body as both robot state and action representation for whole-arm
manipulation, which is consistent with the 3D point cloud observation
space and task space. Compared with using end-effector poses or
joint angles, our method achieves higher spatial generalizability and
sample efficiency while ensuring kinematic feasibility.

between the robot arm and surrounding obstacles is crucial.

Additionally, certain tasks require the robot to interact with

objects using parts of its body rather than the end-effector,

further necessitating the whole-arm control. Learning policies

in joint space is a typical approach for whole-arm manipulation,

which allows joint-level control of the entire configuration.

However, joint space is inherently unaligned with the task

space where the manipulation is conducted, forcing the policy

to implicitly understand the complex non-linear kinematics.

Thus, it is hard to learn a generalizable joint-to-task mapping

from limited demonstrations, restricting the sample efficiency

and spatial generalizability of joint-space policies.

To improve the policy learning performance for whole-

arm manipulation, some previous works explore to combine

Cartesian space and joint space via incorporating differentiable

kinematics within the policy networks [4], [5] or concatenating

redundant joint states upon the end-effector poses [6]. However,

these methods still require the policy to predict joint-space ac-

tions, which cannot avoid the complexity brought by implicitly

learning the non-linear kinematics.

In this paper, we propose Kinematics-Aware Diffusion Policy

(KADP), with consistent task, observation, and action spaces.

Instead of using joint angles, both robot states and actions are

represented with a set of 3D nodes on the robot arm body,

making it convenient for the policy to infer the spatial and

geometric relationship between the robot configuration and

https://kinematics-aware-diffusion-policy.github.io
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point cloud observations in the same 3D space. With such

spatially consistent representation, the sample efficiency and

spatial generalization of policy is improved while whole-arm

control is also enabled. To guarantee the kinematic feasibility

of predicted 3D nodes, we further incorporate kinematic

constraints into diffusion models. For execution, the joint angle

commands are finally computed through an optimization-based

full-configuration inverse kinematics solver. In summary, the

kinematics awareness of the proposed policy learning approach

attributes to the following three aspects:

1) Whole-Arm Control: The proposed method enables ma-

nipulation over the entire robot configuration, overcoming

the limitations of considering only Cartesian-space end-

effector poses.

2) Consistent Task-Observation-Action Spaces: The node

representation is in the 3D space, consistent with the

observation and task spaces, allowing the policy to directly

infer the spatial relationship between the arm body, objects,

and environments.

3) Kinematic Feasibility Guarantee: By incorporating

analytical joint-node mapping in both forward and re-

verse diffusion processes, our approach ensures that the

generated node positions adhere to kinematic constraints.

Across 8 simulation tasks on RLBench [7] and 4 real-world

tasks, we systematically evaluate the performance of the pro-

posed approach, with comparison to several baseline methods

using different action representations. KADP achieves higher

success rate and stronger spatial generalizability, suggesting

the effectiveness of utilizing such 3D node-based robot state

and action representation in body-aware manipulation learning.

II. RELATED WORKS

A. Diffusion Policies for Imitation Learning

Diffusion models are a class of probabilistic generative

models that learn to generate samples from the prior distribution,

typically a Gaussian distribution, by an iterative denoising

process. For visual imitation learning from demonstrations,

Diffusion Policy [1] pioneers the generation of actions through

a conditional diffusion model. This innovative formulation

is able to effectively learn the multi-modal distribution of

demonstration actions while ensuring training stability, which

has also been employed as action decoding head in many large-

scale generalist policy models. Subsequently, many follow-up

works are introduced to improve the generalization ability, data

efficiency and inference speed of diffusion policies. DP3 [2]

and 3D Diffusion Actor [8] enhance 3D scene representations

by using 3D point cloud as observation space instead of RGB

images, while some other works further leverage object-centric

representations [9] or semantic fields [10]. In this paper, we also

adopt 3D point cloud as it has been proved to be more effective

than images. Beyond vanilla diffusion models, BESO [3] and

PointFlowMatch [11] build policies upon score-based diffusion

model and flow matching perspective, respectively. Besides,

some works explore integrating several policies trained on

heterogeneous data by composition [12], [13] or accelerating

diffusion policy with consistency distillation [14].

B. Kinematics-Aware Policy Learning

For robotic manipulation, the selection of action spaces, such

as Cartesian space, joint space, and torque space, will greatly

influence the performance of various tasks [15]–[17]. Cartesian

space, which controls the end-effector pose, is kinematics-

unaware but aligns with the 3D Euclidean space in which the

robot interacts with, whereas joint space provides complete

low-level joint position control but increases the complexity

of policy learning, in contrast [18]. Recently, some works are

proposed to combine advantages of different action spaces for

kinematics-aware policy learning. Mazzaglia et al. [6] introduce

a new family of action spaces for overactuated robot arms,

which adds the joint position or angle of the redundant joint

upon 6D end-effector pose. IKP [5] links Cartesian space and

joint space through forward kinematics to learn multi-action

space policies. Similarly but implemented in diffusion policy

framework, HDP [4] generates both end-effector pose and joint

trajectories with two diffusion branches and finally refines

joint positions from kinematics-unaware poses. Compared to

previous works, we introduce a novel node-based representation

in the 3D space consistent with the observation and task space,

which avoids requiring the policy to implicitly learn the non-

linear kinematics when predicting joint-space actions.

C. Observation and Action Space Alignment

Aligning the observation and action space, which can signif-

icantly simplify the observation-to-action mapping, has been

shown as an effective way to improve sample efficiency and

spatial generalization capability. In 2D image space, R&D [19]

renders the gripper virtually in images to jointly represent

RGB observations and actions, while Genima [20] visualizes

joint actions as colored spheres overlaid on RGB images to

indicate visual targets. Extending to 3D space, ActionFlow [21]

introduces a unified space composed of object pose and feature

sequences to represent both observation and action, but requires

additional pose estimators. Other works utilize 3D point clouds

or voxels as a simple same observation and action space to avoid

extra computation cost of creating new spaces. For instance,

C2F-ARM [22], PerAct [23] and DNAct [24] learn per-voxel

features from discretized 3D observation and formulate the

action prediction as a voxel classification task. Act3D [25]

and ChainedDiffuser [26] predict the next keyframe action

by selecting a 3D point from uniformly-distributed point

candidates, where observation and action lie in the same space.

However, these methods only consider the end-effector. In

contrast, our proposed KADP enables whole-arm control while

preserving high spatial generalizability and sample efficiency

afforded by the task-observation-action space alignment.

III. PRELIMINARIES

A. Problem Formulation

A standard imitation learning problem is considered here,

where the goal is to learn an observation-to-action map-

ping π : O −→ A from a set of expert demonstrations.

Usually, the observation O and action A will both con-

tain a few time steps, i.e. Ot = {ot−To+1, · · · , ot−1, ot}
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Fig. 2: Overview of Kinematics-Aware Diffusion Policy (KADP). Taking the encoded 3D visual representations, the 3D robot nodes and
time embeddings as input, diffusion model predicts the denoised 3D node trajectory iteratively. For execution, the joint angle commands are
computed through an optimization-based whole-arm inverse kinematics solver.

and At = {at, at+1, · · · , at+Ta−1}, where To is the length

of observation history horizon and Ta is the length of

action prediction horizon. Given a demonstration dataset

D = {(o1, a1, · · · , oTi
, aTi

)}ni=1 consisting of n trajectories

with {Ti}ni=1 observation-action pairs, the imitation learning

process is to train the visuomotor policy represented by a

probability distribution π(A|O) and then sample a robot action

At ∼ π(A|Ot) from it during deployment.

B. Diffusion Policy for Action Generation

For the convenience of derivation in Sec. IV, here we briefly

introduce the diffusion policy [1] for action generation. In the

forward process, Gaussian noise is iteratively added to the

action sample A0 drawn from real distribution q(A):

q(Ak|Ak−1) := N (Ak;
√

1− βkAk−1, βkI). (1)

Given the coefficients β1, · · · , βk determined by a noise

scheduler and ᾱk =
∏k

i=1(1− βi), the noisy sample Ak can

be directly sampled from:

q(Ak|A0) := N (Ak;
√
ᾱkA0, (1− ᾱk)I). (2)

Starting from an initial Gaussian noise AK ∼ N (0, I), the

reverse process aims to construct the original noise-free data

A0 iteratively. Note that here the current observation O is

treated as the diffusion condition, so the parameterized model

pθ can be formulated as:

pθ(A
k−1|Ak, O) := N (Ak−1;µθ(A

k, O, k),Σθ(A
k, O, k)).

(3)

At each diffusion step k, a denoising network ϵθ parameterized

by θ is trained to predict the noise component of Ak. The

iterative denoising process is

Ak−1 = αk(A
k − γkϵθ(A

k, O, k)) + σkN (0, I). (4)

Based on (2) and (3), the model can be trained by maximizing

the evidence lower bound (ELBO). During training, a data

sample A0 is randomly sampled, and noise ϵk over k steps is

added through the forward process. The training objective can

be derived to minimize the difference between the added noise

and the network ϵθ prediction:

L = MSELoss(ϵk, ϵθ(A
k, O, k)). (5)

IV. METHOD

A. 3D Node-Based Robot State and Action Representation

An overview of the proposed KADP method is shown in

Fig. 2, where a set of 3D nodes is introduced to represent

the robot configuration within the diffusion policy framework.

Denoted as Anode = {(x0, y0, z0), · · · , (xm, ym, zm)}, each

node (xi, yi, zi) corresponds to the coordinates of the ith joint,

and m denotes the number of selected nodes. This novel node-

based representation is defined in the 3D Euclidean space,

consistent with the point cloud observation space and task

space, allowing the denoising network ϵθ to learn within the

same 3D space and thus improving its sample efficiency and

spatial generalizability. To fully describe the robot configuration

with the minimal number of nodes, we manually choose 8 nodes

for the 7-DoF Franka Emika Panda robot arm, as shown in

the bottom left of Fig. 2. The first 6 nodes are located on

the robot arm from the 1st joint (the base) to the 6th joint,

ensuring the state of each joint is reflected by the 3D position

of the corresponding node. We further place two extra nodes

on the left/right gripper fingers to represent both the states of

the 7th joint and gripper. Notably, an additional binary value

indicating the gripper’s open/close action is also included as

discrete control of the gripper is empirically found to be more

effective. For writing brevity, we will omit the straight-forward

implementation in the following sections.

Note that the entire robot joint configuration is uniquely

determined given feasible 3D node positions, which enables

whole-arm control in contrast with end-effector-based policies.

In addition, the space alignment between 3D point cloud

observations and node-based states/actions offers higher sample

efficiency and stronger spatial generalizability compared to

joint-space policies. For instance, when the positions of

manipulated objects change, the node-based policy can straight-

forwardly interpret the spatial relationship between new point

cloud observations and 3D node positions. In contrast, reflecting

task-space object variations in joint space is non-linear and

complex, making joint-space policy learning more difficult.

In the diffusion policy framework, we can seamlessly take

such 3D nodes as both the state and action representation for

conditional action generation. For robot state, the corresponding

node positions can be easily computed from joint angles via
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forward kinematics, defined by the mapping Ffk(·) : Rn →
R

3×m. For execution, the joint angle commands are required to

be transferred from the predicted 3D node trajectory, denoted as

Fik(·) : R3×m → R
n. We achieve this through an optimization-

based inverse kinematics solver. Given the predicted 3D node

positions Anode, the optimization for joint angle commands

Ajoint is formulated as:

min
Ajoint

||Λ · (Ffk(Ajoint)−Anode) ||2

s.t. Θmin ≤ Ajoint ≤ Θmax,
(6)

where Θmin and Θmax denote the joint limits, and Λ =
diag(λ1, · · · , λm) is a weight matrix that reflects the relative

importance of each node during optimization. In practice, since

the accuracy of the last two gripper finger nodes are more

critical for task success, they are assigned higher weights

(λ7 = λ8 = 5), while the remaining nodes are set to 1.

B. Diffusion Model with Kinematic Constraints

Inherently, the 3D node representation is redundant with

respect to the actuated DoFs of the arm. Thus, the original

diffusion policy cannot guarantee that the generated 3D node

positions correspond to a valid robot configuration, where the

potential kinematic infeasibility will lead to inaccurate opti-

mized joint commands and affect the manipulation performance.

Consequently, We further incorporate kinematic constraints

explicitly, ensuring the node positions are kinematic feasible

throughout the training and inference process.

Inspired by related works [11], [27] exploring variations of

the diffusion model on SO(3) or SE(3) manifold, we define

the distance of two node representations within the transferred

compact joint space, rather than the original 3D Euclidean space.

The interpolation operation between the start nodes A0 and

target nodes A1 is then expressed as At = Ffk( tFik(A
0) +

(1 − t) Fik(A
1)). Similarly, the noise perturbation of node

representation is also defined on joint space and then transferred

to nodes, so that the forward process can be denoted as:

Ak = Ffk(
√
ᾱk Fik(A

0) +
√

1− ᾱk ϵ), (7)

where the standard Gaussian noise ϵ ∼ N (0, I).
Following DDPM [28], the posterior distribution can be

derived using Bayes’ rule as:

q(Fik(A
k−1)|Ak, A0) := N (Fik(A

k−1); µ̃k(A0, Ak), β̃kI),
(8)

where µ̃k(A0, Ak) =
√
ᾱk−1βk

1−ᾱk Fik(A
0)+

√
αk(1−ᾱk−1)

1−ᾱk Fik(A
k)

and β̃k = (1−ᾱk−1)βk

1−ᾱk . We also follow DP3 [2] to adopt sample

prediction for improved high-dimensional action generation.

Accordingly, the training objective for the network µθ is:

L = MSELoss(A0, µθ(A
k, O, k)). (9)

To make the network trainable, the differentiability of the

mappings Ffk and Fik in (9) is required. For the joint-to-node

mapping Ffk, differentiable forward kinematics with a prede-

fined robot URDF model can be adopted. However, the node-

to-joint mapping implemented by optimization-based inverse

kinematics solver, denoted as Fik opt, is non-differentiable,

Algorithm 1 Training Procedure of KADP

repeat

(O,A0) ∼ D ▷ sample dataset

k ← Randint(0,K) ▷ sample diffusion step

ϵ ∼ N (0, I) ▷ sample noise

Ak = Ffk(
√
ᾱk Fik mlp(A

0) +
√
1− ᾱk ϵ) ▷ (7)

L = MSELoss(A0, µθ(A
k, O, k)) ▷ (9)

θ = θ − α∇θ L ▷ update network params

until µθ converged

Algorithm 2 Sampling Procedure of KADP

AK ∼ N (0, I) ▷ sample starting point

for k = K to 1 do

z ∼ N (0, I) ▷ sample noise

Â0 = µθ(A
k, O, k) ▷ network prediction

µ̃k =
√
ᾱk−1βk

1−ᾱk Fik opt(Â
0) +

√
αk(1−ᾱk−1)

1−ᾱk Fik opt(A
k)

Ak−1 = Ffk

(

µ̃k +

√

β̃k z
)

▷ (10)

end for

return A0

preventing gradients from passing through. To address this, we

pretrain a lightweight MLP, denoted as Fik mlp, to approximate

this ik mapping and freeze it during policy model training.

Compared with the optimization-based Fik opt, the MLP-based

Fik mlp is differentiable but less accurate. Thus, Fik mlp is

only used during training and Fik opt is employed for accurate

node-to-joint mapping during inference.

Starting from a noise AK ∼ N (0, I), action generation via

a iterative denoising process also follows the Diffusion Policy

framework. The predicted original sample Â0 = µθ(A
k, O, k)

is used to compute the mean value of the distribution of Ak−1

in (8). The sampling process can be written as:

Ak−1 = Ffk

(

µ̃k(Â0, Ak) +

√

β̃k z
)

, (10)

where z ∼ N (0, I) represents the random Gaussian noise.

The training and sampling procedures are summarized in

Alg. 1 and Alg. 2. During training, the initial sample is mapped

to joint space via the MLP-based Fik mlp, perturbed with

noise, and then projected back to node space. During inference,

at each denoising step, the network predicts a clean sample

estimate and generates the one-step denoised sample using the

optimization-based Fik opt. Note that although the nodes are

initially transferred to joint space and later recovered, the space

alignment between observation and action is still maintained

throughout action process as both input and output of noise

prediction network remain in the consistent 3D space.

C. Implementation Details

The 3D point cloud is first encoded using an MLP-style

encoder, which has been shown to be simple yet effective in

prior work [2], and then concatenated with the robot state, and

sinusoidal diffusion timestep embeddings to form the condition.

A DDIM [29] noise scheduler is adopted with 100 steps at
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Fig. 3: Visualization of 8 RLBench tasks used for evaluation, where coordinated whole-arm motion contributes to successful manipulation.

TABLE I: Performance of our proposed KADP and the baselines on 8 RLBench simulation tasks. The average success rate (%) and its
standard deviation with 3 individual evaluation runs on 100 episodes per task are reported, where the best results are bold.

Method
open

oven

open

drawer

open

box

open

door

close

door

close

microwave

unplug

charger

stack

wine
Average

DP3-EE 24.3 ±2.1 75.7 ±1.5 70.7 ±2.5 33.3 ±2.5 6.0 ±1.0 6.7 ±0.6 36.7 ±5.7 68.0 ±2.0 40.2 ±0.5

DP3-Joint 31.3 ±4.0 23.3 ±4.2 77.7 ±5.0 28.0 ±2.0 18.7 ±2.5 79.7 ±4.0 15.3 ±1.5 68.3 ±2.1 42.8 ±1.3

DP3-ERJ [6] 23.7 ±3.2 55.7 ±3.2 68.0 ±2.6 37.0 ±3.6 15.0 ±2.0 52.3 ±0.6 30.7 ±2.5 75.3 ±3.1 44.7 ±0.9

DP3-HDP [4] 39.3 ±3.1 62.7 ±1.2 83.3 ±3.2 43.0 ±2.6 24.0 ±2.0 76.0 ±2.6 22.0 ±2.6 63.7 ±2.1 51.8 ±0.9

KADP (Ours) 51.3 ±2.1 92.7 ±2.3 76.3 ±1.5 55.0 ±2.0 50.0 ±2.6 87.3 ±2.9 31.3 ±4.5 70.7 ±3.2 64.3 ±1.3

training and 10 steps at inference. All policy models are trained

for 3000 epochs using the AdamW optimizer, with a learning

rate of 1e-4 and weight decay of 1e-6.

The optimization-based IK solver is implemented using

Sequential Least Squares Programming (SLSQP) to minimize

the weighted squared node position error under joint limit

constraints, initialized with the joint configuration from the

previous control step. The MLP-based IK model, consisting

of three simple layers, is trained offline with randomly

sampled joint angles and their corresponding node positions

generated via forward kinematics as ground-truth supervision.

Additional implementation details and IK approximation errors

are provided in the Appendix (available on our Project Website).

V. SIMULATION EVALUATION

A. Evaluation Settings

From the popular robot learning benchmark RLBench [7],

we pick 8 challenging tasks for evaluation. Almost all the

selected tasks are difficult to execute with only end-effector

control, while whole-arm control contributes a lot to successful

manipulation. The standard demonstration collection interface

in RLBench is utilized to collect 20 expert trajectories for

each task. The resolution of RGB-D images captured by five

multi-view cameras is 128 × 128, from which the object region

is segmented and projected to 3D space as the point cloud

observation. For batch training, we downsample the point cloud

to 1024 points with Farthest Sampling Point algorithm. Other

hyper-parameters include the observation horizon To = 2,

action horizon Ta = 8 and the execution horizon Te = 4. For

each task, the average success rate and its standard deviation

with 3 individual evaluation runs on 100 episodes are reported.

B. Comparison with Baselines

We compare KADP against the following baselines: 1)

DP3-EE: generates a sequence of 6D end-effector poses, and

executes correspondent joint commands via inverse kinematics

solvers; 2) DP3-Joint: generates a sequence of joint angles;

3) DP3-ERJ: uses the ERJ space [6], which concatenates end-

effector poses with redundant joint positions; 4) DP3-HDP:

generates both end-effector poses and joint positions using

two diffusion branches, followed by two-branch refinement

through differentiable kinematics [4]. For fair comparison, all

the settings described in Sec. V-A are kept identical, except

for the robot state and action representations.

As shown in Table I, although the performance of methods

shows variability among tasks due to individual evaluation runs

with different random seeds, KADP consistently achieves the

best or second-best performance on nearly all the tasks with

an overall average success rate of 64.3%. These experimental

results demonstrate that KADP, benefiting from whole-arm

control and the alignment between task, observation, and action

spaces, is capable of considering whole-arm motion while

maintaining precise manipulation and high sample efficiency.

Among the baselines, DP3-EE and DP3-Joint exhibit relatively

lower performance, highlighting the limitations of considering

solely end-effector pose or learning in joint space without

maintaining consistency with the observation and task spaces.

By combining the advantages of Cartesian and joint spaces,

DP3-ERJ and DP3-HDP achieve improved results, but their

partial space alignment and lack of explicit kinematic awareness

still limit their effectiveness compared to the proposed KADP.

In our experiments, several typical failure modes of the

baseline methods are observed. For instance, DP3-EE reaches

only 6.7% success on the close microwave task, where

most failures stem from the generated kinematically infeasible

end-effector poses. DP3-HDP, which refines the end-effector

poses to kinematics-aware joint positions, largely avoids IK

errors and improves the performance of end-effector–based

policies, reaching a 76.0% success rate on this task. On the

open oven task, controlling only the end-effector pose by

DP3-EE frequently causes the arm body to collide with the

oven door during the arm lifting stage. In contrast, DP3-Joint

enables smoother control of individual joints, but suffers from

inaccurate task-space generalization, resulting in more frequent

failures when grasping the oven’s thin handle..

https://kinematics-aware-diffusion-policy.github.io/
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(a) Pick up Cube (b) Open Door

(c) Put Cube in Cabinet (d) Push Button Elbow

Fig. 4: Illustration of the 4 real-world manipulation tasks, which are designed for evaluating the capabilities of policies compresensively.
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(a) Kinematic Constraints in DP
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Fig. 5: Ablation on the kinematic constraints in DP and the number of
nodes. IK Error refers to the average per-node IK optimization error
when solving joint commands. KADP w/o KC: remove the kinematic
constraints. Node-3/5/6/7: replace the full 8 nodes with fewer nodes.

C. Ablation and Analysis

Kinematic Constraints in DP: Firstly, we conduct an

ablation study on the effect of kinematics-aware diffusion

process proposed in Sec. IV-B. To assess the kinematic

feasibility of the generated node positions, we calculate the

average per-node distance (i.e., IK error) between the diffusion

policy’s predicted 3D nodes and those corresponding to joint

angles obtained by the optimization-based inverse kinematics

solver. When taking the 3D nodes directly as the state and

action representation in diffusion policy, the predicted actions

cannot be theoretically guaranteed to be kinematically feasible.

As shown in Fig. 5a, the predicted node positions remain

approximately kinematically feasible in practice with an average

IK error of 2.1mm, even in the absence of explicit constraints.

In contrast, the full KADP framework, which incorporates

kinematic constraints into the diffusion process, reduces the

IK error to nearly zero and slightly improve the task success

rate by 4.3%.

The Number of Nodes: We also conduct an ablation study

on the number of nodes, considering several reduced sets

denoted as Node-3/5/6/7. In addition to the two gripper nodes,

these variants include a subset of the remaining nodes on

the robot to approximate the full configuration. For a fair

comparison, we compare these ablated settings against KADP

without kinematic constraints with full 8 nodes, denoted as

Node-8. As shown in Fig. 5b, success rate increases noticeably

as the number of nodes grows from Node-3 to Node-6, clearly

demonstrating steady performance gains from introducing
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Fig. 6: Success rate of the proposed KADP and baselines on two
representative RLBench tasks, open door and open drawer, with
increasing number of expert demonstrations.

additional intermediate nodes to better represent the robot’s

entire configuration. Performance begins to saturate beyond six

nodes at around 60%, while explicitly incorporating kinematics

based on 8 nodes (full KADP) further improves the success

rate to 64.3%, as shown in Fig. 5a. Since the omitted joints

in Node-6/7 correspond to those near the base, which rarely

interact with objects or obstacles during manipulation, their

comparable performance with Node-8 is expected. Given the

negligible additional computational overhead between 7 and 8

nodes, we adopt the full 8-node configuration as the default

setting for the 7-DoF robot arm without loss of generality.

The Number of Demonstrations: To study how the

performance of KADP and baselines changes with the in-

creasing number of expert demonstrations, we further evaluate

two RLBench tasks, open door and open drawer, under

varying counts (Ndemo ∈ {5, 10, 20, 50, 100}). As shown in

Fig. 6, while all methods benefit from a larger number of

demonstrations, KADP (solid yellow line) exhibits consistent

superior performance compared to baselines. In the limited

demonstration regime, where the workspace is only sparsely

covered, KADP shows a clear performance advantage with

faster convergence. On the open drawer task, KADP achieves

nearly 70% success with just 10 demonstrations and exceeds

90% with 20 demonstrations. While the performance gap

between KADP and baselines narrows at 50 or 100 demon-

strations, since sufficient demonstration density is expected to

mitigates inconsistencies in the task, observation, and action

spaces for the baselines as expected, KADP’s superior sample

efficiency in limited-data scenarios is clearly demonstrated.
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TABLE II: Performance of the proposed KADP and baselines on 4 real-world manipulation tasks. For the pick up cube task, 25 trials are
conducted to validate real-world spatial generalization and sample efficiency on 25 grid vertices.

Method
pick up cube

(5 demos)

pick up cube

(13 demos)
open door

put cube

in cabinet

push button

elbow

DP3-EE 13/25 19/25 8/10 1/10 0/10

DP3-Joint 6 /25 10/25 6/10 7/10 10/10

DP3-ERJ [6] 7 /25 12/25 7/10 8/10 8/10

DP3-HDP [4] 11/25 16/25 8/10 7/10 10/10

KADP (Ours) 15/25 22/25 8/10 9/10 10/10

(a) Pick up Cube: 5 demonstrations

(b) Pick up Cube: 13 demonstrations

Fig. 7: Spatial generalization performance on pick up cube task.

VI. REAL-WORLD EXPERIMENTS

A. Environment Setup

A 7-DoF Franka Emika Panda robot arm is used as the real-

world platform, equipped with a fixed front-view RealSense

D435 camera to capture point clouds. Snapshots of 4 designed

real-world tasks are shown in Fig. 4. For all tasks except

pick up cube, we collect 10 demonstrations for training and

perform 10 evaluation trials, with randomized object poses.

With an average inference latency of 0.13s on an NVIDIA

RTX 3090 GPU, we run the policy at 5Hz and control the

robot at 10Hz by executing two of predicted actions. Aside

from adjusting the prediction and execution horizons to Ta = 4
and Te = 2 accordingly, all other hyper-parameters are kept

consistent with simulation studies. The 4 tasks are as follows:

Pick up Cube: The robot only needs to grasp the object

and lift it, which is designed to specifically analyze the

spatial generalizability and sample efficiency of policies. Since

accurately controlling the end-effector pose is sufficient, DP3-

EE is expected to perform well.

Open Door: The robot should grasp the handle and follow a

circular trajectory to open the door. The narrow handle makes

the task sensitive to small positional errors, which can cause

the gripper to lose contact with the handle. While end-effector

control is also sufficient, this task is more challenging.

Put Cube in Cabinet: The robot must grasp a cube and

place it into a deep, narrow cabinet. The main challenges

are reaching the cabinet’s deepest point without arm-body

collisions, requiring the entire robot to remain nearly horizontal,

and inserting the cube into a space only slightly wider than

the gripper, making the task also sensitive to positional errors.

(a) DP3-Joint (b) DP3-EE (c) DP3-EE

Fig. 8: Representative failure cases of baseline methods on real-world
tasks. Additional examples are provided in the Appendix.

Push Button Elbow: The robot is required to press a button

using its elbow instead of the gripper, making it meaningless

to control only the end-effector pose. Learning directly from

joint space is expected to yield good performance as only the

angles of the first 3 joints change during the process.

B. Experimental Results and Comparison with Baselines

Spatial Generalization and Sample Efficiency: On the

pick up cube task, the cube’s initial positions are constrained

within a 20cm×20cm workspace, and a 5×5 grid of evaluation

cases is uniformly sampled. Two demonstration settings are

used: 1) 5 demos at the center and four corners, and 2)

13 demos including the center, corners, edge midpoints, and

midpoints between the center and corners. DP3-Joint performs

worst under both settings as reported in Table II, confirming

the difficulty of learning effective policy from joint space

with limited data. DP3-ERJ and DP3-HDP outperform DP3-

Joint, but reliance on post-optimization or refinement can

lead to occasional end-effector inaccuracies, yielding slightly

lower performance than DP3-EE. KADP achieves success rates

of 60% and 88% for two settings, surpassing all baselines.

Heatmaps in Fig. 7, generated via cubic interpolation over

evaluation cases, show substantially larger success regions

of KADP (the first column), demonstrating superior spatial

generalizability within the demonstration coverage.

On the open door task, KADP, DP3-EE, and DP3-HDP each

achieve 8/10 successful trials, while DP3-Joint only attains

60% success. These results indicate that KADP maintains

the effectiveness of end-effector–based policies when precise

gripper control is sufficient, while offering better generalization

and sample efficiency than joint-space learning. As shown in

Fig. 8a, DP3-Joint typically fails due to inaccurate gripper

positioning, whereas KADP’s failures mainly occur under

challenging out-of-distribution door poses.

Whole-Arm Manipulation: On the put; cube; in; cabinet
task, since the robot configuration cannot be fully determined



8

by end-effector poses alone, DP3-EE struggles with only a 10%

success rate. As shown in Fig. 8b, although the predicted end-

effector pose is often suitable for insertion, frequent collisions

with the cabinet’s top surface cause failures. Other baselines

enable full-configuration control, but inaccurate task-space

generalization often results in collisions with the side surfaces

or insertion failures. In contrast, KADP effectively overcomes

both issues above, achieving up to 90% success.

On the push button elbow task, DP3-EE fails in all trials,

as it simply imitates end-effector trajectories without capturing

the true task intent. As shown in Fig. 8c, although the end-

effector reaches positions similar to successful cases, DP3-EE

cannot properly coordinate the elbow to press the button. In

contrast, KADP and the other baselines achieve near 100%

success. This comparable performance is expected, since the

joint-space action in this task is only three-dimensional, making

the mapping to 3D task space relatively easy to learn.

VII. CONCLUSION

In this paper, we present Kinematics-Aware Diffusion Policy

(KADP), an imitation learning framework that aligns task,

observation, and action spaces in the consistent 3D space

for effective whole-arm robotic manipulation. By representing

both robot states and actions as a set of 3D nodes on the

robot arm, KADP improves sample efficiency and spatial

generalization compared to end-effector-pose or joint-space

approaches, while also enabling full-configuration control.

Extensive experiments in both simulation and real-world

environments demonstrate the superiority of KADP in complex

and body-aware manipulation tasks, underscoring its potential

as a scalable and generalizable solution for learning whole-

arm robot behaviors from limited demonstrations. Despite

its effectiveness, KADP still has several limitations. Like all

fixed-data imitation learning approaches, it is restricted to the

distribution of the provided demonstrations and struggles with

out-of-distribution generalization. Moreover, while the node-

based representation integrates well with the diffusion policy

framework, its high dimensionality may limit compatibility

with other paradigms such as reinforcement learning. Future

directions could involve exploring its performance in large-scale

policy and extending to long-horizon, multi-task scenarios.
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