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Abstract—Full-configuration control of robotic manipulators
with awareness of whole-arm Kinematics is crucial for many
manipulation scenarios involving body collision avoidance or
body-object interactions, which makes it insufficient to consider
only the end-effector poses in policy learning. The typical approach
for whole-arm manipulation is to learn actions in the robot’s
joint space. However, the unalignment between the joint space
and actual task space (i.e., 3D space) increases the complexity of
policy learning, as generalization in task space requires the policy
to intrinsically understand the non-linear arm kinematics, which
is difficult to learn from limited demonstrations. To address this
issue, this letter proposes a kinematics-aware imitation learning
framework with consistent task, observation, and action spaces,
all represented in the same 3D space. Specifically, we represent
both robot states and actions using a set of 3D points on the arm
body, naturally aligned with the 3D point cloud observations. This
spatially consistent representation improves the policy’s sample
efficiency and spatial generalizability while enabling full-body
control. Built upon the diffusion policy, we further incorporate
kinematics priors into the diffusion processes to guarantee the
kinematic feasibility of output actions. The joint angle commands
are finally calculated through an optimization-based whole-arm
inverse kinematics solver for execution. Simulation and real-
world experimental results demonstrate higher success rates and
stronger spatial generalizability of our approach compared to
existing methods in body-aware manipulation policy learning.
Supplementary materials are available at our Project Website:
https://kinematics-aware-diffusion-policy.github.io.

Index Terms—Imitation Learning, Deep Learning in Grasping
and Manipulation, Learning from Demonstration.

I. INTRODUCTION

MITATION learning, where an agent learns to mimic the

expert demonstrations, is an efficient approach to acquire
complex manipulation skills from limited data. Recently,
diffusion-based visual-motor policies [1]-[3] have shown many
exciting results in imitation learning. Compared to traditional
approaches, the remarkable abilities of diffusion models to
learn multi-modal, high-dimensional action distributions are
the key characteristics contributing to their success.

Due to the alignment between the action space and task
space which simplifies the policy learning process, Cartesian-
space end-effector pose representations are widely used in
existing imitation learning methods. However, for whole-arm
robotic manipulation tasks, precise control over the full robot
configuration is required, so imitating only the 6D end-effector
pose trajectories is naturally insufficient. In many scenarios,
such as operating in confined environments, avoiding collisions
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Fig. 1: The proposed approach uses a set of 3D nodes on the arm
body as both robot state and action representation for whole-arm
manipulation, which is consistent with the 3D point cloud observation
space and task space. Compared with using end-effector poses or
joint angles, our method achieves higher spatial generalizability and
sample efficiency while ensuring kinematic feasibility.

between the robot arm and surrounding obstacles is crucial.
Additionally, certain tasks require the robot to interact with
objects using parts of its body rather than the end-effector,
further necessitating the whole-arm control. Learning policies
in joint space is a typical approach for whole-arm manipulation,
which allows joint-level control of the entire configuration.
However, joint space is inherently unaligned with the task
space where the manipulation is conducted, forcing the policy
to implicitly understand the complex non-linear kinematics.
Thus, it is hard to learn a generalizable joint-to-task mapping
from limited demonstrations, restricting the sample efficiency
and spatial generalizability of joint-space policies.

To improve the policy learning performance for whole-
arm manipulation, some previous works explore to combine
Cartesian space and joint space via incorporating differentiable
kinematics within the policy networks [4], [S] or concatenating
redundant joint states upon the end-effector poses [6]]. However,
these methods still require the policy to predict joint-space ac-
tions, which cannot avoid the complexity brought by implicitly
learning the non-linear kinematics.

In this paper, we propose Kinematics-Aware Diffusion Policy
(KADP), with consistent task, observation, and action spaces.
Instead of using joint angles, both robot states and actions are
represented with a set of 3D nodes on the robot arm body,
making it convenient for the policy to infer the spatial and
geometric relationship between the robot configuration and
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point cloud observations in the same 3D space. With such
spatially consistent representation, the sample efficiency and
spatial generalization of policy is improved while whole-arm
control is also enabled. To guarantee the kinematic feasibility
of predicted 3D nodes, we further incorporate kinematic
constraints into diffusion models. For execution, the joint angle
commands are finally computed through an optimization-based
full-configuration inverse kinematics solver. In summary, the
kinematics awareness of the proposed policy learning approach
attributes to the following three aspects:

1) Whole-Arm Control: The proposed method enables ma-
nipulation over the entire robot configuration, overcoming
the limitations of considering only Cartesian-space end-
effector poses.

2) Consistent Task-Observation-Action Spaces: The node
representation is in the 3D space, consistent with the
observation and task spaces, allowing the policy to directly
infer the spatial relationship between the arm body, objects,
and environments.

3) Kinematic Feasibility Guarantee: By incorporating
analytical joint-node mapping in both forward and re-
verse diffusion processes, our approach ensures that the
generated node positions adhere to kinematic constraints.

Across 8 simulation tasks on RLBench [7]] and 4 real-world
tasks, we systematically evaluate the performance of the pro-
posed approach, with comparison to several baseline methods
using different action representations. KADP achieves higher
success rate and stronger spatial generalizability, suggesting
the effectiveness of utilizing such 3D node-based robot state
and action representation in body-aware manipulation learning.

II. RELATED WORKS
A. Diffusion Policies for Imitation Learning

Diffusion models are a class of probabilistic generative
models that learn to generate samples from the prior distribution,
typically a Gaussian distribution, by an iterative denoising
process. For visual imitation learning from demonstrations,
Diffusion Policy [1] pioneers the generation of actions through
a conditional diffusion model. This innovative formulation
is able to effectively learn the multi-modal distribution of
demonstration actions while ensuring training stability, which
has also been employed as action decoding head in many large-
scale generalist policy models. Subsequently, many follow-up
works are introduced to improve the generalization ability, data
efficiency and inference speed of diffusion policies. DP3 [2]]
and 3D Diffusion Actor [§] enhance 3D scene representations
by using 3D point cloud as observation space instead of RGB
images, while some other works further leverage object-centric
representations [9] or semantic fields [[10]. In this paper, we also
adopt 3D point cloud as it has been proved to be more effective
than images. Beyond vanilla diffusion models, BESO [3] and
PointFlowMatch [11]] build policies upon score-based diffusion
model and flow matching perspective, respectively. Besides,
some works explore integrating several policies trained on
heterogeneous data by composition [[12]], [|13] or accelerating
diffusion policy with consistency distillation [14]].

B. Kinematics-Aware Policy Learning

For robotic manipulation, the selection of action spaces, such
as Cartesian space, joint space, and torque space, will greatly
influence the performance of various tasks [[15]—[17]]. Cartesian
space, which controls the end-effector pose, is kinematics-
unaware but aligns with the 3D Euclidean space in which the
robot interacts with, whereas joint space provides complete
low-level joint position control but increases the complexity
of policy learning, in contrast [18]]. Recently, some works are
proposed to combine advantages of different action spaces for
kinematics-aware policy learning. Mazzaglia et al. 6] introduce
a new family of action spaces for overactuated robot arms,
which adds the joint position or angle of the redundant joint
upon 6D end-effector pose. IKP [5] links Cartesian space and
joint space through forward kinematics to learn multi-action
space policies. Similarly but implemented in diffusion policy
framework, HDP [4]] generates both end-effector pose and joint
trajectories with two diffusion branches and finally refines
joint positions from kinematics-unaware poses. Compared to
previous works, we introduce a novel node-based representation
in the 3D space consistent with the observation and task space,
which avoids requiring the policy to implicitly learn the non-
linear kinematics when predicting joint-space actions.

C. Observation and Action Space Alignment

Aligning the observation and action space, which can signif-
icantly simplify the observation-to-action mapping, has been
shown as an effective way to improve sample efficiency and
spatial generalization capability. In 2D image space, R&D [19]
renders the gripper virtually in images to jointly represent
RGB observations and actions, while Genima [20]] visualizes
joint actions as colored spheres overlaid on RGB images to
indicate visual targets. Extending to 3D space, ActionFlow [21]]
introduces a unified space composed of object pose and feature
sequences to represent both observation and action, but requires
additional pose estimators. Other works utilize 3D point clouds
or voxels as a simple same observation and action space to avoid
extra computation cost of creating new spaces. For instance,
C2F-ARM [22], PerAct [23|] and DNAct [24] learn per-voxel
features from discretized 3D observation and formulate the
action prediction as a voxel classification task. Act3D [25]]
and ChainedDiffuser [26] predict the next keyframe action
by selecting a 3D point from uniformly-distributed point
candidates, where observation and action lie in the same space.
However, these methods only consider the end-effector. In
contrast, our proposed KADP enables whole-arm control while
preserving high spatial generalizability and sample efficiency
afforded by the task-observation-action space alignment.

III. PRELIMINARIES
A. Problem Formulation

A standard imitation learning problem is considered here,
where the goal is to learn an observation-to-action map-
ping 7 : O — A from a set of expert demonstrations.
Usually, the observation O and action A will both con-
tain a few time steps, i.e. Oy = {ot—7,41, " ,0t—1,0¢}
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Fig. 2: Overview of Kinematics-Aware Diffusion Policy (KADP). Taking the encoded 3D visual representations, the 3D robot nodes and
time embeddings as input, diffusion model predicts the denoised 3D node trajectory iteratively. For execution, the joint angle commands are
computed through an optimization-based whole-arm inverse kinematics solver.

and A; = {a¢,a441,+ ,ai47, -1}, Where T, is the length
of observation history horizon and 7, is the length of
action prediction horizon. Given a demonstration dataset
D = {(o1,a1, - ,or,,ar,)}, consisting of n trajectories
with {T;}I"_, observation-action pairs, the imitation learning
process is to train the visuomotor policy represented by a
probability distribution w(A|O) and then sample a robot action
Ay ~ w(A|Oy) from it during deployment.

B. Diffusion Policy for Action Generation

For the convenience of derivation in Sec. [[V] here we briefly
introduce the diffusion policy [1]] for action generation. In the
forward process, Gaussian noise is iteratively added to the
action sample A° drawn from real distribution q(A):

q(AF[ARY) = N (AR T = BRARY 85, ()

Given the coefficients ', ---, 3% determined by a noise
scheduler and @* = []/_, (1 — %), the noisy sample A* can
be directly sampled from:

q(AF|A%) := N(AF;VakA®, (1 — a")I). 2)

Starting from an initial Gaussian noise A% ~ A(0, 1), the
reverse process aims to construct the original noise-free data
AV iteratively. Note that here the current observation O is
treated as the diffusion condition, so the parameterized model
pg can be formulated as:

po(A" AR, 0) := N(A; g (AF, 0, k), 5 (A%, 0, k).
3)
At each diffusion step k, a denoising network ey parameterized
by 6 is trained to predict the noise component of A*. The
iterative denoising process is

AME = (AR = pep(AY,0,k)) + oxN(0,1). (4)

Based on (2) and (3), the model can be trained by maximizing
the evidence lower bound (ELBO). During training, a data
sample A° is randomly sampled, and noise ¢* over k steps is
added through the forward process. The training objective can
be derived to minimize the difference between the added noise
and the network €y prediction:

L = MSELoss(e", eg(A*, O, k)). (5)

IV. METHOD
A. 3D Node-Based Robot State and Action Representation

An overview of the proposed KADP method is shown in
Fig. 2] where a set of 3D nodes is introduced to represent
the robot configuration within the diffusion policy framework.
Denoted as Anode = {(20,%0,20)s " » (Tims Ym, 2m) }» €ach
node (x;,y;, 2;) corresponds to the coordinates of the i*" joint,
and m denotes the number of selected nodes. This novel node-
based representation is defined in the 3D Euclidean space,
consistent with the point cloud observation space and task
space, allowing the denoising network ey to learn within the
same 3D space and thus improving its sample efficiency and
spatial generalizability. To fully describe the robot configuration
with the minimal number of nodes, we manually choose 8 nodes
for the 7-DoF Franka Emika Panda robot arm, as shown in
the bottom left of Fig. 2] The first 6 nodes are located on
the robot arm from the 1% joint (the base) to the 6" joint,
ensuring the state of each joint is reflected by the 3D position
of the corresponding node. We further place two extra nodes
on the left/right gripper fingers to represent both the states of
the 7*" joint and gripper. Notably, an additional binary value
indicating the gripper’s open/close action is also included as
discrete control of the gripper is empirically found to be more
effective. For writing brevity, we will omit the straight-forward
implementation in the following sections.

Note that the entire robot joint configuration is uniquely
determined given feasible 3D node positions, which enables
whole-arm control in contrast with end-effector-based policies.
In addition, the space alignment between 3D point cloud
observations and node-based states/actions offers higher sample
efficiency and stronger spatial generalizability compared to
joint-space policies. For instance, when the positions of
manipulated objects change, the node-based policy can straight-
forwardly interpret the spatial relationship between new point
cloud observations and 3D node positions. In contrast, reflecting
task-space object variations in joint space is non-linear and
complex, making joint-space policy learning more difficult.

In the diffusion policy framework, we can seamlessly take
such 3D nodes as both the state and action representation for
conditional action generation. For robot state, the corresponding
node positions can be easily computed from joint angles via



forward kinematics, defined by the mapping Fg(-) : R" —
R3*™_ For execution, the joint angle commands are required to
be transferred from the predicted 3D node trajectory, denoted as
Fik(+) : R3*™ — R™, We achieve this through an optimization-
based inverse kinematics solver. Given the predicted 3D node
positions A 4e, the optimization for joint angle commands
Ajoint is formulated as:

min [ A+ (Foc(Ajoine) = Anode) |

join

s.t. Gmin < Ajoint < Gmaxa

(6)

where O, and Op,, denote the joint limits, and A =
diag(A1, -+, A\yp) is a weight matrix that reflects the relative
importance of each node during optimization. In practice, since
the accuracy of the last two gripper finger nodes are more
critical for task success, they are assigned higher weights
(A7 = A\g = b), while the remaining nodes are set to 1.

B. Diffusion Model with Kinematic Constraints

Inherently, the 3D node representation is redundant with
respect to the actuated DoFs of the arm. Thus, the original
diffusion policy cannot guarantee that the generated 3D node
positions correspond to a valid robot configuration, where the
potential kinematic infeasibility will lead to inaccurate opti-
mized joint commands and affect the manipulation performance.
Consequently, We further incorporate kinematic constraints
explicitly, ensuring the node positions are kinematic feasible
throughout the training and inference process.

Inspired by related works [[11]], [27]] exploring variations of
the diffusion model on SO(3) or SE(3) manifold, we define
the distance of two node representations within the transferred
compact joint space, rather than the original 3D Euclidean space.
The interpolation operation between the start nodes A° and
target nodes A! is then expressed as A’ = Fp (tFy (AY) +
(1 — t) Fi(A')). Similarly, the noise perturbation of node
representation is also defined on joint space and then transferred
to nodes, so that the forward process can be denoted as:

AF = Fp (Vak Fy (A°) + (7)

1—ake),

where the standard Gaussian noise € ~ A (0, I).
Following DDPM [28]], the posterior distribution can be
derived using Bayes’ rule as:

q(Fu (AF=1)|AF) A%) == N (Fy (AR1); i (A0, AR, BF 1),

(3)

where i*(AY, AF) = %Fik(Ao)+%Fik(Ak)
~ —k—1 k

and F = (1_1017)5 We also follow DP3 [2]] to adopt sample

prediction for improved high-dimensional action generation.
Accordingly, the training objective for the network g is:

L = MSELoss(A°, us(A*, 0, k)). )

To make the network trainable, the differentiability of the
mappings Fy and Fyy in (9) is required. For the joint-to-node
mapping Fy, differentiable forward kinematics with a prede-
fined robot URDF model can be adopted. However, the node-
to-joint mapping implemented by optimization-based inverse
kinematics solver, denoted as Fix opt, 1S non-differentiable,

Algorithm 1 Training Procedure of KADP

repeat
(0,A% ~ D > sample dataset
k + Randint(0, K) > sample diffusion step
e ~N(0,1) > sample noise

L = MSELoss(A°, ug(A*, 0, k)) >
0=0—-aVylL > update network params
until pp converged

AR = Fp (VAP Fia_ip(A°) + VI —ak ) >
)

Algorithm 2 Sampling Procedure of KADP

AK ~ N(0,1) > sample starting point
for k=K to1ldo
z~N(0,1) > sample noise

AY = 1ig(AF, O, k) > network prediction

N /GF=T gk ~ ok (1—gk—1
Mk = %(;lcﬁFik_opt (AO) + %Fik_opt (Ak)
AR = By (7 1 \[B* 2) > (10)
end for
return A°

preventing gradients from passing through. To address this, we
pretrain a lightweight MLP, denoted as Fjy_p,1;,, to approximate
this ik mapping and freeze it during policy model training.
Compared with the optimization-based Fi_opt, the MLP-based
Fix_mip is differentiable but less accurate. Thus, Fix 1, is
only used during training and Fix_,p¢ is employed for accurate
node-to-joint mapping during inference.

Starting from a noise AX ~ A(0, 1), action generation via
a iterative denoising process also follows the Diffusion Policy
framework. The predicted original sample A° = 1ig(A*, O, k)
is used to compute the mean value of the distribution of A*~1
in (). The sampling process can be written as:

AR = Fy (iR (A0, AF) + \/@z),

where z ~ N (0, I) represents the random Gaussian noise.
The training and sampling procedures are summarized in
Alg.[l]and Alg.[2] During training, the initial sample is mapped
to joint space via the MLP-based Fjx n1p, perturbed with
noise, and then projected back to node space. During inference,
at each denoising step, the network predicts a clean sample
estimate and generates the one-step denoised sample using the
optimization-based Fix ,,¢. Note that although the nodes are
initially transferred to joint space and later recovered, the space
alignment between observation and action is still maintained
throughout action process as both input and output of noise
prediction network remain in the consistent 3D space.

(10)

C. Implementation Details

The 3D point cloud is first encoded using an MLP-style
encoder, which has been shown to be simple yet effective in
prior work [2], and then concatenated with the robot state, and
sinusoidal diffusion timestep embeddings to form the condition.
A DDIM [29] noise scheduler is adopted with 100 steps at
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Fig. 3: Visualization of 8 RLBench tasks used for evaluation, where coordinated whole-arm motion contributes to successful manipulation.

TABLE I: Performance of our proposed KADP and the baselines on 8 RLBench simulation tasks. The average success rate (%) and its
standard deviation with 3 individual evaluation runs on 100 episodes per task are reported, where the best results are bold.

Method open open open open close ‘ close unplug st.ack Average
oven drawer box door door microwave charger wine

DP3-EE 24.3 42.1 75.7 £1.5 70.7 £2.5 33.3 +25 6.0 £1.0 6.7 £0.6 36.7 +5.7 68.0 +2.0 40.2 +0.5

DP3-Joint 31.3 +40 23.3 +42 77.7 £5.0 28.0 +2.0 18.7 +25 79.7 +4.0 153 +15 68.3 +2.1 42.8 +1.3

DP3-ERIJ [6] 23.7 432 557 432 68.0 +2.6 37.0 +3.6 15.0 +2.0 52.3 0.6 30.7 +2.5 75.3 £3.1 44.7 +0.9

DP3-HDP [4] 39.3 £3.1 62.7 £1.2 83.3 +3.2 43.0 +2.6 24.0 £2.0 76.0 +2.6 22.0 £2.6 63.7 +2.1 51.8 £0.9

KADP (Ours) ‘ 51.3 +2.1 92.7 £23 76.3 +1.5 55.0 +2.0 50.0 +2.6 87.3 +2.9 31.3 +45 70.7 £3.2 64.3 £13

training and 10 steps at inference. All policy models are trained
for 3000 epochs using the AdamW optimizer, with a learning
rate of le-4 and weight decay of le-6.

The optimization-based IK solver is implemented using
Sequential Least Squares Programming (SLSQP) to minimize
the weighted squared node position error under joint limit
constraints, initialized with the joint configuration from the
previous control step. The MLP-based IK model, consisting
of three simple layers, is trained offline with randomly
sampled joint angles and their corresponding node positions

generated via forward kinematics as ground-truth supervision.

Additional implementation details and IK approximation errors

are provided in the Appendix (available on our Project Website).

V. SIMULATION EVALUATION
A. Evaluation Settings

From the popular robot learning benchmark RLBench [7]],
we pick 8 challenging tasks for evaluation. Almost all the
selected tasks are difficult to execute with only end-effector
control, while whole-arm control contributes a lot to successful
manipulation. The standard demonstration collection interface
in RLBench is utilized to collect 20 expert trajectories for
each task. The resolution of RGB-D images captured by five
multi-view cameras is 128 x 128, from which the object region
is segmented and projected to 3D space as the point cloud
observation. For batch training, we downsample the point cloud
to 1024 points with Farthest Sampling Point algorithm. Other
hyper-parameters include the observation horizon 7, = 2,
action horizon 7, = 8 and the execution horizon 7, = 4. For
each task, the average success rate and its standard deviation

with 3 individual evaluation runs on 100 episodes are reported.

B. Comparison with Baselines

We compare KADP against the following baselines: 1)
DP3-EE: generates a sequence of 6D end-effector poses, and
executes correspondent joint commands via inverse kinematics
solvers; 2) DP3-Joint: generates a sequence of joint angles;

3) DP3-ERJ: uses the ERJ space [6], which concatenates end-
effector poses with redundant joint positions; 4) DP3-HDP:
generates both end-effector poses and joint positions using
two diffusion branches, followed by two-branch refinement
through differentiable kinematics [4]. For fair comparison, all
the settings described in Sec. are kept identical, except
for the robot state and action representations.

As shown in Table I} although the performance of methods
shows variability among tasks due to individual evaluation runs
with different random seeds, KADP consistently achieves the
best or second-best performance on nearly all the tasks with
an overall average success rate of 64.3%. These experimental
results demonstrate that KADP, benefiting from whole-arm
control and the alignment between task, observation, and action
spaces, is capable of considering whole-arm motion while
maintaining precise manipulation and high sample efficiency.
Among the baselines, DP3-EE and DP3-Joint exhibit relatively
lower performance, highlighting the limitations of considering
solely end-effector pose or learning in joint space without
maintaining consistency with the observation and task spaces.
By combining the advantages of Cartesian and joint spaces,
DP3-ERJ and DP3-HDP achieve improved results, but their
partial space alignment and lack of explicit kinematic awareness
still limit their effectiveness compared to the proposed KADP.

In our experiments, several typical failure modes of the
baseline methods are observed. For instance, DP3-EE reaches
only 6.7% success on the close microwave task, where
most failures stem from the generated kinematically infeasible
end-effector poses. DP3-HDP, which refines the end-effector
poses to kinematics-aware joint positions, largely avoids IK
errors and improves the performance of end-effector-based
policies, reaching a 76.0% success rate on this task. On the
open oven task, controlling only the end-effector pose by
DP3-EE frequently causes the arm body to collide with the
oven door during the arm lifting stage. In contrast, DP3-Joint
enables smoother control of individual joints, but suffers from
inaccurate task-space generalization, resulting in more frequent
failures when grasping the oven’s thin handle..
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Fig. 4: Illustration of the 4 real-world manipulation tasks, which are designed for evaluating the capabilities of policies compresensively.
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0 0

(a) Kinematic Constraints in DP  (b) The Number of Nodes (w/o KC)

Fig. 5: Ablation on the kinematic constraints in DP and the number of
nodes. IK Error refers to the average per-node IK optimization error
when solving joint commands. KADP w/o KC: remove the kinematic
constraints. Node-3/5/6/7: replace the full 8 nodes with fewer nodes.

C. Ablation and Analysis

Kinematic Constraints in DP: Firstly, we conduct an
ablation study on the effect of kinematics-aware diffusion
process proposed in Sec. [[V-B] To assess the kinematic
feasibility of the generated node positions, we calculate the
average per-node distance (i.e., IK error) between the diffusion
policy’s predicted 3D nodes and those corresponding to joint
angles obtained by the optimization-based inverse kinematics
solver. When taking the 3D nodes directly as the state and
action representation in diffusion policy, the predicted actions

cannot be theoretically guaranteed to be kinematically feasible.

As shown in Fig. [5a] the predicted node positions remain
approximately kinematically feasible in practice with an average

IK error of 2.1mm, even in the absence of explicit constraints.

In contrast, the full KADP framework, which incorporates
kinematic constraints into the diffusion process, reduces the
IK error to nearly zero and slightly improve the task success
rate by 4.3%.

The Number of Nodes: We also conduct an ablation study
on the number of nodes, considering several reduced sets
denoted as Node-3/5/6/7. In addition to the two gripper nodes,
these variants include a subset of the remaining nodes on
the robot to approximate the full configuration. For a fair
comparison, we compare these ablated settings against KADP
without kinematic constraints with full 8 nodes, denoted as
Node-8. As shown in Fig. 5] success rate increases noticeably
as the number of nodes grows from Node-3 to Node-6, clearly
demonstrating steady performance gains from introducing

Task: Open Door Task: Open Drawer
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Fig. 6: Success rate of the proposed KADP and baselines on two
representative RLBench tasks, open door and open drawer, with
increasing number of expert demonstrations.

additional intermediate nodes to better represent the robot’s
entire configuration. Performance begins to saturate beyond six
nodes at around 60%, while explicitly incorporating kinematics
based on 8 nodes (full KADP) further improves the success
rate to 64.3%, as shown in Fig. [5a] Since the omitted joints
in Node-6/7 correspond to those near the base, which rarely
interact with objects or obstacles during manipulation, their
comparable performance with Node-8 is expected. Given the
negligible additional computational overhead between 7 and 8
nodes, we adopt the full 8-node configuration as the default
setting for the 7-DoF robot arm without loss of generality.

The Number of Demonstrations: To study how the
performance of KADP and baselines changes with the in-
creasing number of expert demonstrations, we further evaluate
two RLBench tasks, open door and open drawer, under
varying counts (Ngemo € {5, 10,20,50,100}). As shown in
Fig. [6] while all methods benefit from a larger number of
demonstrations, KADP (solid yellow line) exhibits consistent
superior performance compared to baselines. In the limited
demonstration regime, where the workspace is only sparsely
covered, KADP shows a clear performance advantage with
faster convergence. On the open drawer task, KADP achieves
nearly 70% success with just 10 demonstrations and exceeds
90% with 20 demonstrations. While the performance gap
between KADP and baselines narrows at 50 or 100 demon-
strations, since sufficient demonstration density is expected to
mitigates inconsistencies in the task, observation, and action
spaces for the baselines as expected, KADP’s superior sample
efficiency in limited-data scenarios is clearly demonstrated.



TABLE II: Performance of the proposed KADP and baselines on 4 real-world manipulation tasks. For the pickup cube task, 25 trials are
conducted to validate real-world spatial generalization and sample efficiency on 25 grid vertices.

pick up cube pick up cube put cube push button

Meth d

ethod (5 demos) (13 demos) open door in cabinet elbow
DP3-EE 13/25 19/25 8/10 1/10 0/10
DP3-Joint 6/25 10/25 6/10 7/10 10/10
DP3-ERJ IEI 7/25 12/25 7/10 8/10 8/10
DP3-HDP || 11/25 16/25 8/10 7/10 10/10
KADP (Ours) 15/25 22/25 8/10 9/10 10/10
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Fig. 7: Spatial generalization performance on pick up cube task.

VI. REAL-WORLD EXPERIMENTS

A. Environment Setup

A 7-DoF Franka Emika Panda robot arm is used as the real-
world platform, equipped with a fixed front-view RealSense
D435 camera to capture point clouds. Snapshots of 4 designed
real-world tasks are shown in Fig. ] For all tasks except
pick up cube, we collect 10 demonstrations for training and
perform 10 evaluation trials, with randomized object poses.
With an average inference latency of 0.13s on an NVIDIA
RTX 3090 GPU, we run the policy at SHz and control the
robot at 10Hz by executing two of predicted actions. Aside
from adjusting the prediction and execution horizons to 7}, = 4
and T, = 2 accordingly, all other hyper-parameters are kept
consistent with simulation studies. The 4 tasks are as follows:

Pick up Cube: The robot only needs to grasp the object
and lift it, which is designed to specifically analyze the
spatial generalizability and sample efficiency of policies. Since
accurately controlling the end-effector pose is sufficient, DP3-
EE is expected to perform well.

Open Door: The robot should grasp the handle and follow a
circular trajectory to open the door. The narrow handle makes
the task sensitive to small positional errors, which can cause
the gripper to lose contact with the handle. While end-effector
control is also sufficient, this task is more challenging.

Put Cube in Cabinet: The robot must grasp a cube and
place it into a deep, narrow cabinet. The main challenges
are reaching the cabinet’s deepest point without arm-body
collisions, requiring the entire robot to remain nearly horizontal,
and inserting the cube into a space only slightly wider than
the gripper, making the task also sensitive to positional errors.

j 2
grasping \
failure 3

i collision of
the arm body

only control
the EE pose
J ~

A7

-

(a) DP3-Joint (b) DP3-EE

(c) DP3-EE

Fig. 8: Representative failure cases of baseline methods on real-world
tasks. Additional examples are provided in the Appendix.

Push Button Elbow: The robot is required to press a button
using its elbow instead of the gripper, making it meaningless
to control only the end-effector pose. Learning directly from
joint space is expected to yield good performance as only the
angles of the first 3 joints change during the process.

B. Experimental Results and Comparison with Baselines

Spatial Generalization and Sample Efficiency: On the
pick up cube task, the cube’s initial positions are constrained
within a 20cm x 20cm workspace, and a 5 x 5 grid of evaluation
cases is uniformly sampled. Two demonstration settings are
used: 1) 5 demos at the center and four corners, and 2)
13 demos including the center, corners, edge midpoints, and
midpoints between the center and corners. DP3-Joint performs
worst under both settings as reported in Table [lI} confirming
the difficulty of learning effective policy from joint space
with limited data. DP3-ERJ and DP3-HDP outperform DP3-
Joint, but reliance on post-optimization or refinement can
lead to occasional end-effector inaccuracies, yielding slightly
lower performance than DP3-EE. KADP achieves success rates
of 60% and 88% for two settings, surpassing all baselines.
Heatmaps in Fig. [7] generated via cubic interpolation over
evaluation cases, show substantially larger success regions
of KADP (the first column), demonstrating superior spatial
generalizability within the demonstration coverage.

On the open door task, KADP, DP3-EE, and DP3-HDP each
achieve 8/10 successful trials, while DP3-Joint only attains
60% success. These results indicate that KADP maintains
the effectiveness of end-effector—based policies when precise
gripper control is sufficient, while offering better generalization
and sample efficiency than joint-space learning. As shown in
Fig. [8a] DP3-Joint typically fails due to inaccurate gripper
positioning, whereas KADP’s failures mainly occur under
challenging out-of-distribution door poses.

Whole-Arm Manipulation: On the put; cube; in; cabinet
task, since the robot configuration cannot be fully determined



by end-effector poses alone, DP3-EE struggles with only a 10%
success rate. As shown in Fig. although the predicted end-
effector pose is often suitable for insertion, frequent collisions
with the cabinet’s top surface cause failures. Other baselines
enable full-configuration control, but inaccurate task-space
generalization often results in collisions with the side surfaces
or insertion failures. In contrast, KADP effectively overcomes
both issues above, achieving up to 90% success.

On the push button elbow task, DP3-EE fails in all trials,
as it simply imitates end-effector trajectories without capturing
the true task intent. As shown in Fig. although the end-
effector reaches positions similar to successful cases, DP3-EE
cannot properly coordinate the elbow to press the button. In
contrast, KADP and the other baselines achieve near 100%
success. This comparable performance is expected, since the
joint-space action in this task is only three-dimensional, making
the mapping to 3D task space relatively easy to learn.

VII. CONCLUSION

In this paper, we present Kinematics-Aware Diffusion Policy
(KADP), an imitation learning framework that aligns task,
observation, and action spaces in the consistent 3D space
for effective whole-arm robotic manipulation. By representing
both robot states and actions as a set of 3D nodes on the
robot arm, KADP improves sample efficiency and spatial
generalization compared to end-effector-pose or joint-space
approaches, while also enabling full-configuration control.
Extensive experiments in both simulation and real-world
environments demonstrate the superiority of KADP in complex
and body-aware manipulation tasks, underscoring its potential
as a scalable and generalizable solution for learning whole-
arm robot behaviors from limited demonstrations. Despite
its effectiveness, KADP still has several limitations. Like all
fixed-data imitation learning approaches, it is restricted to the
distribution of the provided demonstrations and struggles with
out-of-distribution generalization. Moreover, while the node-
based representation integrates well with the diffusion policy
framework, its high dimensionality may limit compatibility
with other paradigms such as reinforcement learning. Future
directions could involve exploring its performance in large-scale
policy and extending to long-horizon, multi-task scenarios.
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