
9

APPENDIX A

IMPLEMENTATION DETAILS

A. Network Architecture

Point Cloud and Robot State Encoding: The raw 3D point

cloud converted from RGB-D observations is first downsampled

to 1024 points using Farthest Point Sampling (FPS), and then

encoded into a global visual representation via a lightweight

MLP encoder. In parallel, the robot proprioceptive state,

represented as current 3D robot node positions obtained through

forward kinematics, is also encoded with an MLP.

Conditional Denoising: At each diffusion step k, the noisy

action represented as robot node trajectories Ak is processed

by a temporal Conv1D U-Net. Global conditioning information

(visual features, robot state features, and sinusoidal diffusion

timestep embeddings) is injected through cross-attention layers.

We adopt sample prediction (rather than ϵ-prediction) to directly

estimate the clean sample Â0 and compute the denoised sample

Ak−1. This procedure is iterated for K diffusion steps.

Hyper-parameter Details: Each action, robot state and

observation dimension is independently normalized to the range

[−1, 1]. Both visual and robot-state embeddings are set to 64

dimensions. During training, we use 100 diffusion steps, while

at inference time we employ 10 steps with DDIM as the noise

scheduler for faster sampling. Other key hyper-parameters

include the observation horizon To = 2, action horizon Ta = 8,

and execution horizon Te = 4.

B. Baseline Settings

DP3-ERJ: Mazzaglia et al. [6] proposed two realizations

of the ER (End-effector Redundancy) action space family,

ERAngle (ERA) and ERJoint (ERJ), to enable full-body control

of redundant robot arms while preserving space alignment. ERA

resolves redundancy by introducing an additional elbow angle,

whereas ERJ controls the redundant joint separately from the

inverse kinematics. As ERJ shows superior performance in [6],

we implement ERJ within the DP3 framework, treating the

base joint as an independently controlled joint.

DP3-HDP: For a fair comparison, we reproduce the HDP

approach by removing the high-level Perceiver-Actor [23] agent

and retaining only the low-level Robot Kinematics Diffuser.

Specifically, two separate diffusion branches, are employed

to predict joint trajectories and end-effector pose trajectories,

respectively. Differentiable forward kinematics Ffk(·) are used

to link two diffusion branches. The total training objective is:

L = λpose MSE(Apose, A
gt
pose) + λjoint MSE(Ajoint, A

gt
joint)

+λjoint→pose MSE
(

Ffk(Ajoint),A
gt
pose

)

, (11)

where the weighting parameters are set to λpose = λjoint =
λjoint→pose = 1, following the official HDP implementation.

During inference, the predicted joint trajectory is refined to

ensure that the corresponding end-effector poses closely match

the predicted pose trajectory. A single optimization step with

learning rate α is denoted as:

Ajoint ← Ajoint − α
∂ ∥Apose − Ffk(Ajoint)∥

∂ Ajoint
. (12)

APPENDIX B

ADDITIONAL RESULTS AND ANALYSIS

A. Details on Inverse Kinematics Mapping

Optimization-Based IK: We implement the optimization-

based IK solver using SciPy’s minimize function with the

SLSQP algorithm. The gradient of the objective respect to the

joint angles is computed analytically using the chain rule, by

multiplying the current node position error with the Jacobian

matrix (∂Anode/∂Ajoint), which is obtained through widely-

used robot kinematics toolkit Pinocchio. In practice, the solver

is initialized with the joint configuration from the previous

control step. Joint limits are enforced via box constraints

throughout optimization. For the 7-DoF Franka Emika Panda

robot, we optimize a total of 8 joints (7 arm joints plus one

gripper joint) when solving IK; however, only the 7 arm joints

are used to control the robot, while the gripper’s binary opening-

closing action is enabled through a separate action channel

output by the diffusion model for improved precision. This

design allows the IK solver to focus on accurate whole-arm

configuration while maintaining reliable gripper actuation.

MLP-Based IK: The simple MLP network, which takes 3D

node positions as input and predicts the corresponding joint

angles, consists of three fully connected linear layers with

nonlinear activations in between. During training, joint angles

are randomly sampled within the predefined joint limits and

transformed into 3D node positions via forward kinematics

to form supervised training pairs. Using an L2 loss function

between predicted and ground-truth joint configurations, the

network is trained with the Adam optimizer for 3,000 epochs,

where each epoch contains 10,000 randomly sampled joint

configurations with a batch size of 128.

IK Error: The mean errors of the optimization-based and

MLP-based IK solvers are reported in Table III. Here, Joint

Space error denotes per-joint distance between the predicted

joint angles and the ground-truth configuration, while Node

Space error measures the per-node Euclidean distance between

the node positions computed from the predicted joints and those

obtained from the ground-truth joints via forward kinematics.

For the optimization-based IK solver, Gaussian noise is added

to the ground-truth joint angles to serve as the initial guess,

reflecting realistic usage during inference.

As expected, the MLP-based IK exhibits larger errors than

the optimization-based solver. However, since IK mapping is

only invoked when perturbing the original sample A0 with

Gaussian noise, the relatively small approximation error of

MLP-based IK can therefore be viewed as an additional stochas-

tic perturbation, which does not alter the fundamental properties

of the forward diffusion process. The training objective of the

single-step denoising network remains independent of the MLP-

based IK. In contrast, during inference, the policy starts from

a sampled Gaussian noise and iteratively performs multi-step

denoising to generate final actions. If the MLP-based IK is

used, its approximation error in each step would accumulate

across denoising iterations, degrading execution accuracy. Thus,

the optimization-based IK is adopted during inference to ensure

more precise node-to-joint mapping.



10

TABLE III: Comparison of the mean per-joint error and per-node
Euclidean error of the optimization-based and MLP-based IK.

Error / Method Optim-based IK MLP-based IK

Joint-Space Error (rad) 0.00352 0.03408

Node-Space Error (m) 0.00021 0.01624

B. Computation Time Cost

We conduct a comprehensive analysis of the computational

overhead introduced by incorporating FK and IK into the policy,

using a single NVIDIA RTX 3090 GPU. We report the time

cost of key components for both the full KADP model and

KADP without kinematic constraints (w/o KC): observation

encoding (Obs. Enc.), denoising network forward pass (Denoi.

Net), forward kinematics (FK), inverse kinematics (IK MLP /

IK OPT), and other operations (Others). During training, we

additionally measure the loss backpropagation time.

As shown in Fig. 9, feature extraction and other operations

incur negligible overhead in both training and inference.

Across different batch sizes during training, the MLP-based IK

adds minimal cost and FK introduces only modest overhead.

Although kinematic constraints slightly increase loss backward

computation time, the overall training efficiency remains

largely unaffected. During inference, latency is evaluated under

different numbers of DDIM steps. The denoising network

accounts for more than half of the total runtime and remains

nearly unchanged with or without kinematic constraints. FK

and IK together contribute about 45% of the total latency, with

optimization-based IK being slightly more time-consuming.

We note that the current implementations of FK and the

optimization-based IK have not been extensively optimized,

and there remains significant room for improving their compu-

tational efficiency.

KADP KADP KADPw/o KC w/o KC w/o KC
0

50

100

150

Ti
m

e 
C

os
t (

m
s)

BS=64 BS=128 BS=256

Average Time Cost during Training

Loss Back.
Denoi. Net
FK
IK MLP
Obs. Enc.
Others

KADP KADP KADPw/o KC w/o KC w/o KC
0

50

100

150

200

250

Ti
m

e 
C

os
t (

m
s)

DDIM 5 DDIM 10 DDIM 20

Average Time Cost during Inference

Denoi. Net
FK
IK OPT
Obs. Enc.
Others

Fig. 9: Breakdown of average computation time during training (left)
and inference (right) for KADP with and without kinematic constraints,
illustrating the overhead of key components under varying batch sizes
and DDIM steps.

C. Real-world Failure Cases

We further illustrate additional representative failure cases

of the baseline methods in Fig. 10 to highlight their limi-

tations in comparison with KADP. DP3-EE considers only

the end-effector pose and lacks the ability to coordinate

full-configuration motion, which often leads to collisions

between the arm body and the manipulated object (Fig. 10a)

and results in consistent failure on whole-arm manipulation

tasks such as push button elbow (Fig. 10b). In contrast,

DP3-Joint has access to individual joints and enables full-

configuration control; however, its typical failures mainly

stem from inaccurate end-effector pose during manipulation.

For example, on the put cube in cabinet task, DP3-Joint

frequently causes the gripper to collide with the cabinet side

wall (Fig. 10c), highlighting the difficulty of learning the non-

linear task-to-joint mapping effectively with limited data. DP3-

ERJ and DP3-HDP, which both enables whole-arm control

while maintaining partial space alignment to some extent,

markedly outperform DP3-Joint on tasks requiring precise

end-effector prediction. However, their optimization-based post-

processing module, jointly leveraging predicted joint angles and

end-effector poses, does not always guarantee accurate final

execution. DP3-ERJ occasionally violates joint limits during

optimization (Fig. 10d), primarily due to inaccurate redundant

joint predictions. DP3-HDP performs slightly better but still

suffers from end-effector inaccuracies after the refinement

module (Fig. 10f), due to only partial task–observation–action

space alignment compared to our approach. Overall, KADP

succeeds in all evaluation cases presented here. Please refer to

our supplementary video (also available on https://kinematics-

aware-diffusion-policy.github.io) for further visualizations of

success and failure cases.

(a) DP3-EE (b) DP3-EE (c) DP3-Joint

(d) DP3-ERJ (e) DP3-ERJ (f) DP3-HDP

Fig. 10: Additional failure cases of baseline methods on real-world
manipulation tasks. Please refer to the supplementary video for
complete execution visualizations.


