APPENDIX A
IMPLEMENTATION DETAILS

A. Network Architecture

Point Cloud and Robot State Encoding: The raw 3D point
cloud converted from RGB-D observations is first downsampled
to 1024 points using Farthest Point Sampling (FPS), and then
encoded into a global visual representation via a lightweight
MLP encoder. In parallel, the robot proprioceptive state,
represented as current 3D robot node positions obtained through
forward kinematics, is also encoded with an MLP.

Conditional Denoising: At each diffusion step &, the noisy
action represented as robot node trajectories A” is processed
by a temporal Conv1D U-Net. Global conditioning information
(visual features, robot state features, and sinusoidal diffusion
timestep embeddings) is injected through cross-attention layers.
We adopt sample prediction (rather than e-prediction) to directly
estimate the clean sample A% and compute the denoised sample
Ak=1_ This procedure is iterated for K diffusion steps.

Hyper-parameter Details: Each action, robot state and
observation dimension is independently normalized to the range
[—1,1]. Both visual and robot-state embeddings are set to 64
dimensions. During training, we use 100 diffusion steps, while
at inference time we employ 10 steps with DDIM as the noise
scheduler for faster sampling. Other key hyper-parameters
include the observation horizon 7, = 2, action horizon T, = 8,
and execution horizon T, = 4.

B. Baseline Settings

DP3-ERJ: Mazzaglia et al. [6] proposed two realizations
of the ER (End-effector Redundancy) action space family,
ERAngle (ERA) and ERJoint (ERJ), to enable full-body control
of redundant robot arms while preserving space alignment. ERA
resolves redundancy by introducing an additional elbow angle,
whereas ERJ controls the redundant joint separately from the
inverse kinematics. As ERJ shows superior performance in [6],
we implement ERJ within the DP3 framework, treating the
base joint as an independently controlled joint.

DP3-HDP: For a fair comparison, we reproduce the HDP
approach by removing the high-level Perceiver-Actor [23] agent
and retaining only the low-level Robot Kinematics Diffuser.
Specifically, two separate diffusion branches, are employed
to predict joint trajectories and end-effector pose trajectories,
respectively. Differentiable forward kinematics Fg () are used
to link two diffusion branches. The total training objective is:

L=)\pose MSE(Apose7 Alg)gse) + >\j0int MSE(Ajointa Aj%int)

+)\joint~>pose MSE(Fﬂ((AjointL A%)tose)) (1 1)

where the weighting parameters are set to Apose = Ajoint =
Ajoint—pose = 1, following the official HDP implementation.

During inference, the predicted joint trajectory is refined to
ensure that the corresponding end-effector poses closely match
the predicted pose trajectory. A single optimization step with
learning rate «v is denoted as:

a ||Apose - ka(Ajoint)”
0 Ajoint)

Ajoint — Ajoint -« (12)

APPENDIX B
ADDITIONAL RESULTS AND ANALYSIS

A. Details on Inverse Kinematics Mapping

Optimization-Based IK: We implement the optimization-
based IK solver using SciPy’s minimize function with the
SLSQP algorithm. The gradient of the objective respect to the
joint angles is computed analytically using the chain rule, by
multiplying the current node position error with the Jacobian
matrix (0Anode/0Ajoint), Which is obtained through widely-
used robot kinematics toolkit Pinocchio. In practice, the solver
is initialized with the joint configuration from the previous
control step. Joint limits are enforced via box constraints
throughout optimization. For the 7-DoF Franka Emika Panda
robot, we optimize a total of 8 joints (7 arm joints plus one
gripper joint) when solving IK; however, only the 7 arm joints
are used to control the robot, while the gripper’s binary opening-
closing action is enabled through a separate action channel
output by the diffusion model for improved precision. This
design allows the IK solver to focus on accurate whole-arm
configuration while maintaining reliable gripper actuation.

MLP-Based IK: The simple MLP network, which takes 3D
node positions as input and predicts the corresponding joint
angles, consists of three fully connected linear layers with
nonlinear activations in between. During training, joint angles
are randomly sampled within the predefined joint limits and
transformed into 3D node positions via forward kinematics
to form supervised training pairs. Using an Lo loss function
between predicted and ground-truth joint configurations, the
network is trained with the Adam optimizer for 3,000 epochs,
where each epoch contains 10,000 randomly sampled joint
configurations with a batch size of 128.

IK Error: The mean errors of the optimization-based and
MLP-based IK solvers are reported in Table III. Here, Joint
Space error denotes per-joint distance between the predicted
joint angles and the ground-truth configuration, while Node
Space error measures the per-node Euclidean distance between
the node positions computed from the predicted joints and those
obtained from the ground-truth joints via forward kinematics.
For the optimization-based IK solver, Gaussian noise is added
to the ground-truth joint angles to serve as the initial guess,
reflecting realistic usage during inference.

As expected, the MLP-based IK exhibits larger errors than
the optimization-based solver. However, since IK mapping is
only invoked when perturbing the original sample Ay with
Gaussian noise, the relatively small approximation error of
MLP-based IK can therefore be viewed as an additional stochas-
tic perturbation, which does not alter the fundamental properties
of the forward diffusion process. The training objective of the
single-step denoising network remains independent of the MLP-
based IK. In contrast, during inference, the policy starts from
a sampled Gaussian noise and iteratively performs multi-step
denoising to generate final actions. If the MLP-based IK is
used, its approximation error in each step would accumulate
across denoising iterations, degrading execution accuracy. Thus,
the optimization-based IK is adopted during inference to ensure
more precise node-to-joint mapping.

TABLE III: Comparison of the mean per-joint error and per-node
Euclidean error of the optimization-based and MLP-based IK.

Error / Method ‘ Optim-based IK MLP-based 1K

0.00352
0.00021

0.03408
0.01624

Joint-Space Error (rad)
Node-Space Error (m)

B. Computation Time Cost

We conduct a comprehensive analysis of the computational
overhead introduced by incorporating FK and IK into the policy,
using a single NVIDIA RTX 3090 GPU. We report the time
cost of key components for both the full KADP model and
KADP without kinematic constraints (w/o KC): observation
encoding (Obs. Enc.), denoising network forward pass (Denoi.
Net), forward kinematics (FK), inverse kinematics (IK MLP /
IK OPT), and other operations (Others). During training, we
additionally measure the loss backpropagation time.

As shown in Fig. 9, feature extraction and other operations
incur negligible overhead in both training and inference.
Across different batch sizes during training, the MLP-based IK
adds minimal cost and FK introduces only modest overhead.
Although kinematic constraints slightly increase loss backward
computation time, the overall training efficiency remains
largely unaffected. During inference, latency is evaluated under
different numbers of DDIM steps. The denoising network
accounts for more than half of the total runtime and remains
nearly unchanged with or without kinematic constraints. FK
and IK together contribute about 45% of the total latency, with
optimization-based IK being slightly more time-consuming.
We note that the current implementations of FK and the
optimization-based IK have not been extensively optimized,
and there remains significant room for improving their compu-
tational efficiency.

Average Time Cost during Training Average Time Cost during Inference

N Loss Back.
Denoi. Net

. FK

. K MLP

B Obs. Enc.

N Others

Denoi. Net
- FK

-
. |KOPT

200 W Obs. Enc.
B Others

o .

of

Time Cost (ms)
Time Cost (ms)

KADP wio KC
BS=64

KADP wio KC
BS=128

KADP wio KC
BS=256

KADP wio KC
DDIM 5

KADP w/o KC
DDIM 10

KADP w/o KC
DDIM 20

Fig. 9: Breakdown of average computation time during training (left)
and inference (right) for KADP with and without kinematic constraints,
illustrating the overhead of key components under varying batch sizes
and DDIM steps.

C. Real-world Failure Cases

We further illustrate additional representative failure cases
of the baseline methods in Fig. 10 to highlight their limi-
tations in comparison with KADP. DP3-EE considers only
the end-effector pose and lacks the ability to coordinate
full-configuration motion, which often leads to collisions
between the arm body and the manipulated object (Fig. 10a)
and results in consistent failure on whole-arm manipulation
tasks such as push button elbow (Fig. 10b). In contrast,

DP3-Joint has access to individual joints and enables full-
configuration control; however, its typical failures mainly
stem from inaccurate end-effector pose during manipulation.
For example, on the put cube in cabinet task, DP3-Joint
frequently causes the gripper to collide with the cabinet side
wall (Fig. 10c), highlighting the difficulty of learning the non-
linear task-to-joint mapping effectively with limited data. DP3-
ERJ and DP3-HDP, which both enables whole-arm control
while maintaining partial space alignment to some extent,
markedly outperform DP3-Joint on tasks requiring precise
end-effector prediction. However, their optimization-based post-
processing module, jointly leveraging predicted joint angles and
end-effector poses, does not always guarantee accurate final
execution. DP3-ERJ occasionally violates joint limits during
optimization (Fig. 10d), primarily due to inaccurate redundant
joint predictions. DP3-HDP performs slightly better but still
suffers from end-effector inaccuracies after the refinement
module (Fig. 10f), due to only partial task—observation—action
space alignment compared to our approach. Overall, KADP
succeeds in all evaluation cases presented here. Please refer to
our supplementary video (also available on https://kinematics-
aware-diffusion-policy.github.io) for further visualizations of
success and failure cases.

= : Only Control
B Siody ‘E the EE Pose

Collision

pms? Grasping

Failure

- A s

4 Exceed
Joint Limits =

Elbow Position

(d) DP3-ERJ (e) DP3-ERJ (f) DP3-HDP

Fig. 10: Additional failure cases of baseline methods on real-world
manipulation tasks. Please refer to the supplementary video for
complete execution visualizations.

